martes, 2 de diciembre de 2008

genetica


Genética


Cromosoma, en citología, nombre que recibe una diminuta estructura filiforme formada por ácidos nucleicos y proteínas presente en todas las células vegetales y animales. El cromosoma contiene el ácido nucleico, ADN, que se divide en pequeñas unidades llamadas genes. Éstos determinan las características hereditarias de la célula u organismo. Las células de los individuos de una especie determinada suelen tener un número fijo de cromosomas, que en las plantas y animales superiores se presentan por pares. El ser humano tiene 23 pares de cromosomas. En estos organismos, las células reproductoras tienen por lo general sólo la mitad de los cromosomas presentes en las corporales o somáticas. Durante la fecundación, el espermatozoide y el óvulo se unen y reconstruyen en el nuevo organismo la disposición por pares de los cromosomas; la mitad de estos cromosomas procede de un parental, y la otra mitad del otro. Es posible alterar el número de cromosomas de forma artificial, sobre todo en las plantas, donde se forman múltiplos del número de cromosomas normal mediante tratamiento con colchicina.




CIENCIAS DE LA NATURALEZA


En 1866, un padre agustino aficionado a la botánica llamado Gregorio Mendel publicó los resultados de unas investigaciones que había realizado pacientemente en el jardín de su convento durante más de diez años. Éstas consistían en cruzar distintas variedades de guisantes y comprobar cómo se transmitían algunas de sus características a la generación siguiente.
Su sistema de experimentación tuvo éxito debido a su gran sencillez, ya que se dedicó a cruzar plantas que sólo diferían en una característica externa que, además, era fácilmente detectable. Por" ejemplo, cruzó plantas de semillas verdes con plantas de semillas amarillas, plantas con tallo largo con otras de tallo corto, etc.
Mendel intuyó que existía un factor en el organismo que determinaba cada una de estas características. según él, este factor debía estar formado por dos elementos, Lino que se heredaba del organismo masculino y el otro del elemento. Además estos dos elementos consistirían en versiones iguales o diferentes del mismo carácter; cada ,tensión del factor proporcionaría, por ejemplo, un color distinto a la semilla o una longitud de tallo diferente en la planta. Además, tal y como veremos más adelante, algunas, versiones serían dominantes respecto a otras. Actualmente a estos factores se les denomina genes, palabra derivada de un término griego que significa «generar», y a cada versión diferente del gen se la denomina alelo. Así el gen que determina, por" ejemplo, el color de la semilla en la planta del guisante puede tener " dos alelos, uno para las semillas verdes y otro para las semillas amarillas.
Observando los resultados de cruzamientos sistemáticos, Mendel elaboró una teoría general sobre la herencia, conocida como leyes de Mendel.

Primera ley de Mendel


Si se cruzan dos razas puras para un determinado carácter, los descendientes de la primera generación son todos iguales entre sí y, a su vez, iguales a uno de sus progenitores, que es el poseedor del alelo dominante. Mendel elaboró este principio al observar que si cruzaba dos razas puras de plantas del guisante, una de semillas amarillas y otra de semillas verdes, la descendencia que obtenía, a la que él denominaba F1, consistía únicamente en plantas que producían semillas de color amarillo. Estas plantas debían tener, en el gen que determina el color de la semilla, los dos alelos que habían heredado de sus progenitores, un alelo para el color verde y otro para el color amarillo; pero, por alguna razón, sólo se manifestaba este último, por lo que se lo denominó alelo dominante, mientras que al primero se le llamó alelo recesivo.
Segunda ley de Mendel


Los alelos recesivos que, al cruzar dos razas puras, no se manifiestan en la primera generación (denominada F1), reaparecen en la segunda generacion (denominada F2) resultante de cruzar los individuos de la primera. Ademas la proporción en la que aparecen es de 1 a 3 respecto a los alelos dominantes. Mendel cruzó entre sí los guisantes de semillas amarillas obtenidos en la primera generación del experimento anterior. Cuando clasificó la descendencia resultante, observó que aproximadamente tres cuartas partes tenían semillas de color amarillo y la cuarta parte restante tenía las semillas de color verde. Es decir, que el carácter « semilla de color verde », que no había aparecido en ninguna planta de la primera generación, sí que aparecía en la segunda aunque en menor proporcion que el carácter « semilla de color amarillo »

Tercera ley de mendel


Los caracteres que se heredan son independientes entre si y se combinan al azar al pasar a la descendencia, manifestandose en la segunda generacion filial o F2. En este caso, Mendel selecciono para el cruzamiento plantas que diferian en dos caracteristicas, por ejemplo, el color de los guisantes (verdes o amarillos) y su superficie (lisa o arrugada).
Observo que la primera generaci6n estaba compuesta unicamente por plantas con guisantes amarillos y lisos, cumpliendose la primera ley. En la segunda generaci6n, sin embargo, aparecian todas las posibles combinaciones de caracteres, aunque enlas proporciones siguientes: 1/16 parte de guisantes verdes y rugosos, 3/16 de verdes y lisos, 3/16 de amarilios y rugosos y por ultimo 9/16 de amarillos y lisos. Esto le indujo a pensar que los genes eran estructuras independientes unas de otras y, por lo tanto, que unicamente dependia del azar la combinaci6n de los mismos que pudiese aparecer en la descendencia.
La Genetica despues de Mendel: Teoria Cromosomica de la herencia
A principios de este siglo, cuando las tecnicas para el estudio de la celula ya estaban suficientemente desarrolladas, se pudo determinar que los genes estaban formados por acido desoxirribonucleico (ADN) y ademas se encontraban dentro de unas estructuras que aparecian en el citoplasma justo antes de cada proceso de divisi6n celular. A estas estructuras se las denomin6 cromosomas, termino que significa « cuerpos coloreados », por la intensidad con la que fijaban determinados colorantes al ser teñidos para poder observarlos al microscopio. Ademas se vio que estos aparecian repetidos en la celula formando un numero determinado de parejas de cromosomas homologos caracteristico de cada especie, uno de los cuales se heredaba del padre y el otro de la madre. Tambien se pudo comprobar que el numero de pares de cromosomas no dependia de la complejidad del ser vivo. Asi por ejemplo, en el hombre se contabilizaron 23 pares de cromosomas, mientras que en una planta como el trigo podian encontrarse hasta 28 pares.
En base a estos descubrimientos y a los estudios realizados en 1906 por el zoologo estadounidense Thomas H. Morgan sobre los cromosomas de la mosca del vinagre (Drosophila melanogaster), se pudo elaborar la teoria cromos6mica de la herencia donde se establecia de manera inequívoca la localizac16n fisica de los genes en la celula. Gracias a esta teoria se pudo dar tambien una explicaci6n definitiva a los casos en los que no se cumplian con exactitud las leyes de Mendel anteriormente citadas.
De manera parecida a Mendel, Morgan se dedic6 a cruzar de manera sistematica diferentes variedades de moscas del vinagre. Estas moscas ofrecian muchas ventajas con respecto a los guisantes ya que tienen un ciclo vital muy corto, producen una gran descendencia, son faciles de cultivar, tienen tan s6lo cuatro cromosomas y presentan caracteristicas hereditarias facilmente observables, como el color de los ojos, la presencia o ausencia de alas, etcetera.
Herencia de genes ligados
La investigacion con las moscas del vinagre proporcionó a Morgan evidencias de que los caracteres no eran heredados siempre de forma independiente tal y como habia postulado Mendel en su tercera ley. Supuso que al haber solo cuatro cromosomas diferentes, muchos genes debian estar «ligados», es decir, debian compartir el mismo cromosoma y por ello mostrar una Clara tendencia a transmitirse juntos a la descendencia. No obstante, las conclusiones realizadas por Mendel años atras, no dejaban de ser correctas para los genes «no ligados». Solo la casualidad hizo que Mendel escogiese para los cruces de sus plantas caracteristicas determinadas por genes situados en cromosomas distintos.
Herencia ligada al sexo
En uno de sus primeros experimentos, Morgan cruzó un macho de moscas de ojos rojos (normales) con una hembra que habia encontrado casualmente y que tenia los ojos blancos. Las moscas que obtuvo en esta primera generacion o F1 tenian todas los ojos rojos, tal y como se describe en la primera ley de Mendel. Pero cuando cruzó entre si estas moscas para obtener la segunda generación filial o F2, descubrió que los ojos blancos solo aparecian en las moscas macho y ademas como un caracter recesivo. Por alguna razón, la caracteristica «ojos blancos» no era transmitida a las moscas hembras, incumpliendo, al menos parcialmente, la segunda ley de Mendel. Al mismo tiempo, en sus observaciones al microscopio, Morgan habia advertido con extrañeza que entre los cuatro pares de cromosomas de los machos, habia una pareja en la que los cromosomas homólogos no tenian exactamente la misma forma. Era como si a uno de ellos le faltase un trozo, por lo que a partir de ese momento a esta pareja se la denomin6 cromosomas XY. Sin embargo en la hembra, la misma pareja de cromosomas homólogos no presentaba ninguna diferencia entre ellos, por lo que se la denominó cromosomas XX. Morgan pensó que los resultados anómalos del cruzamiento anterior se debian a que el gen que determinaba el color de los ojos se encontraba en la porción que faltaba en el cromosoma Y del macho.
Por tanto, en el caso de las hembras (xx) al existir dos alelos, aunque uno de ellos fuese el recesivo (ojos blancos), el carácter manifestado era el normal (ojos rojos). En los machos, sin embargo, al disponer Únicamente de un alelo (el de su único cromosoma X), el carácter recesivo si que podia ser observado. De esta manera quedaba tambien establecido que el sexo se heredaba como un carácter más del organismo.
La era de la genética
Desde que su padre murió de cáncer de colon hace seis meses, William Panati, un empresario de Illinois, Estados Unidos, no logra conciliar el sueño. Y es que su bisabuelo, la abuela y el hermano fueron víctimas del tumor. Nada pudieron hacer los médicos para salvar a sus familiares.
La semilla del cáncer de colon se trasmite de padres a hijos, generación tras generación, y unas veces germina y otras permanece latente toda la vida.
Toda su materia gris ronda en torno a una maldita palabra:
Cáncer.
Es entonces cuando oye que ciertos investigadores han desarrollado una prueba sanguínea para detectar el gen que provoca la aparición del cáncer de colon. En pocos días los resultados confirman que Panati y sus tres hijas están a salvo del gen.
Panati es uno de los primeros beneficiados de uno de los avances mas revolucionarios de la medicina en los últimos tiempos: los marcadores genéticos, pedazos de ADN capaces de rastrear el material genético en busca de genes destartalados.
Esta nueva tecnología - comenta el doctor Jon Beckwith, del Departamento de Microbiología y Genética Molecular de la Escuela Medica de Harvard, Massachusetts se esta permitiendo a los médicos la identificación de individuos que podrán padecer enfermedades genéticas a lo largo de su vida, o que, estando sanos, portan genes defectuosos.
No hace menos de 25 años los especialistas, a la hora de enfrentarse a una enfermedad de origen genético, no podían hacer casi nada. La medicina estaba desarmada.
Tan solo se conocía el numero de cromosomas en humanos, su localización en el interior del núcleo y la situación de algunos genes dispersos.
Por ejemplo, el medico recibía a una pareja temerosa de volver a tener un hijo con el síndrome de Tay Sachs - una enfermedad cuyos síntomas son la ceguera y la parálisis seis meses después del nacimiento, que conducen a la muerte del niño antes de los cinco años - o afectado de miopatía de Duchenne, una atrofia muscular que deja a los enfermos postrados para siempre en una silla de ruedas.
Ante esta situación el medico podía únicamente hablar de probabilidades, de los riesgos de que se manifieste o no el gen fatal. Bien poco.
Sin embargo, hoy la ciencia esta empezando a intervenir en los cromosomas, a detectar los genes dañados mediante avisadores químicos, a darles caza con trampas moleculares y a reemplazarlos por otros en perfecto estado, valiéndose de pinzas enzimáticas. Antes estos espectaculares resultados, no es de extrañar que muchos científicos afirmen que estamos en la Era de la Genética.
La aventura de la ciencia daba comienzo en la primavera de 1953, cuando James Watson, que estaba de visita en la Universidad de Harvard, y Francis Crick, que trabajaba en Cambridge, descubrieron - sin realizar un solo experimento - la estructura del ADN, el acidodesoxirribonucleico. Mientras Crick terminaba su tesis doctoral, Watson, encerrado en su laboratorio, construía modelos de hojalata y alambre, para representar de forma tridimensional las complejas uniones entre los átomos.
Con los químicos norteamericanos Pauling y Corey pisándoles los talones, Watson y Crick partieron de unas fotografías del
ADN obtenidas por rayos x, y la utilizaron para descubrir que la molécula de ADN esta formada por una doble hélice, es decir, dos largos hilos perfectamente enrollados. Cada hilo se constituye a partir de una secuencia de bases nucleicas, cuatro en concreto - adenina ( A ), guanina ( G ),
citosina ( C ) y timina ( T ) -, que representan las letras moleculares del mensaje genético.
Por último, Crick comprobó que, combinando series de tres bases - AGC, AGT, ATA -, lo que se conoce con el nombre de tripletes, se podían obtener más de veinte alternativas distintas, las claves para sintetizar los veinte aminoácidos esenciales para la vida.
Treinta y siete años más tarde, los científicos están empezando a descubrir que en esta hélice se encuentran escritos los secretos de la vida, el envejecimiento, la muerte y enfermedades como el cáncer, los trastornos del corazón, la locura, la depresión, el mongolismo o las malformaciones genéticas.
Ahora sabemos, gracias al desarrollo de la biología molecular, que en los casi dos metros de ADN que se guarda en el núcleo de toda y cada una de las células del cuerpo están los 50.000 a 100.000 genes que dan las órdenes para edificar ladrillo a ladrillo, nuestro cuerpo.
Cada gen tiene una posición determinada y fija en el cromosoma. Lo mismo da que sea el cromosoma de un aborigen australiano, el de un indio del Amazonas o un yuppy de Manhattan. Y cuando los errores aparecen, lo hacen para todos igual. Así, por ejemplo, el mongolismo, también conocido con el nombre de trisomía del cromosoma 21 o síndrome de Down, tiene el mismo origen genético para todos los seres humanos: Un cromosoma de más.
Ya en 1909 el médico ingles Archibald Garrold se percató de que algunos rasgos hereditarios se correspondían con enfermedades metabólicas, que se caracterizaban por la ausencia de una reacción bioquímica conocida.
Garrold propuso que tales trastornos, a los que denomino errores innatos del metabolismo, se debían a la ausencia de la enzima que mediaba la reacción. Este es el caso de la enfermedad conocida como fenilcetonuria o idiotez fenilpiruvica, en la que el aminoácido fenilalanina no puede transformarse en otro aminoácido similar, la tirosína.
Este pequeño lapsus enzimático se traduce en la acumulación en sangre de una sustancia tóxica, la fenilpiruvato, que en los bebes causa un retraso mental.
Así, si nos detenemos a pensar que un gen sano dirige la síntesis de una proteína sana y juega un papel concreto en el buen funcionamiento del organismo, comprenderemos entonces que si el gen en cuestión presentara un grave defecto, este puede repercutir en la salud de la proteína. ¿ Cómo ? Pues muy sencillo: impidiendo que se fabrique o que, de lo contrario, presente una anomalía en su estructura que le impida ejercer su trabajo.
Si hemos dicho que existe entre 50.000 y 100.000 genes, esto quiere decir, en potencia, habrá el mismo número de trastornos genéticos.
Los médicos conocen en la actualidad alrededor de 3.500 enfermedades relacionadas con un patrimonio genético imperfecto, y han logrado aislar unos 1.800 genes implicados en la aparición de estos males. Pero, en estos momentos, más de 10.000 investigadores en todo





No hay comentarios: